

Tetrahedron Letters 41 (2000) 5511-5513

TETRAHEDRON LETTERS

A stereoselective synthesis of (+)-malyngolide via a ring-closing olefin metathesis

Miguel Carda,^a Encarnación Castillo,^a Santiago Rodríguez^a and J. Alberto Marco^{b,*}

^aDepartment of Quimica Inorgánica y Orgánica, University of Jaume I, Castellón, E-12080 Castellón, Spain ^bDepartment of Quimica Orgánica, University of Valencia, E-46100 Burjassot, Valencia, Spain

Received 6 April 2000; accepted 1 June 2000

Abstract

A very short and stereoselective synthesis of the non-natural enantiomer of malyngolide from L-erythrulose is described. Key features of the synthesis are the Felkin–Anh diastereoselective allylation of a poly-oxygenated ketone and the allylation/metathesis/allylic oxidation protocol recently described by our group. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: malyngolide; ring-closing metathesis; diastereoselective allyltin addition.

(–)-Malyngolide is a naturally ocurring δ -lactone isolated from the alga *Lyngbya majuscula* Gomont and displays antibiotic activity against pathogenic species belonging to genera such as *Staphylococcus, Mycobacterium, Pseudomonas* and other related genera.¹ Total syntheses of this metabolite, both of the naturally occurring enantiomer and of its antipode (+)-malyngolide, have been previously published by other groups, including two very recent ones by Hoppe, Tanaka and their respective co-workers.² In the present communication, we present another approach to (+)-malyngolide based on our recently described methodology of sequential allylation/metathesis/ allylic oxidation.³ The starting material is L-erythrulose, currently developed by our group as a useful C₄ chiron.⁴ Our retrosynthetic analysis of (+)-malyngolide is shown in Scheme 1.

^{*} Corresponding author. Fax: 34-96-3864328; e-mail: alberto.marco@uv.es

^{0040-4039/00/\$ -} see front matter \odot 2000 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(00)00884-4

The synthetic sequence depicted above relies on a stereoselective nucleophilic allylation of a suitably protected erythrulose derivative. This has previously been achieved for 3,4-di-O-benzyl erythrulose derivatives under conditions of chelation control.⁴ Unfortunately, the synthetically much more convenient erythrulose acetals⁵ were found to decompose in the presence of certain Lewis acids or to react unstereoselectively under other allylation conditions.⁶ After extensive experimentation, we found that treatment of the silvlated L-erythrulose acetonide 1^5 (Scheme 2, TPS=t-butyldiphenylsilyl) with allyl tri-n-butyltin in the presence of the mild Lewis acid MgBr₂·Et₂O⁷ furnished allylcarbinol 2 as an essentially single stereoisomer in a very good chemical yield. Unexpectedly, the configuration of the new stereogenic centre corresponded to that predicted by the Felkin-Anh model and was thus opposite to that which was expected from a chelation control.^{4,8} Desilylation of 2 and subsequent tosylation afforded 3, which was treated with base to yield epoxide 4. Nucleophilic opening of the oxirane ring with an in situ generated *n*octylcuprate reagent⁹ gave rise to the tertiary carbinol 5, which was then O-alkylated with methallyl chloride. This provided ether 6, which was then exposed to ring-closing metathesis conditions³ in the presence of Grubbs benzylidene ruthenium catalyst.¹⁰ Dihydropyran 7 was formed in an excellent 92% yield. Allylic oxidation with the CrO₃/3,5-DMP complex³ yielded the α,β -unsaturated δ -lactone 8, which was then subjected to oxidative cleavage of the dioxolane ring with periodic acid in Et₂O.¹¹ The intermediate aldehyde was not purified but immediately reduced with NaBH₄ in isopropanol to yield dehydromalyngolide 9.¹² Lactone 9 was then stereoselectively converted into (+)-malyngolide by catalytic hydrogenation.¹³ The described physical and spectral properties of both malyngolide and its dehydro derivative were coincident with those of our products.2,14

Scheme 2. Reaction conditions: (a) allylSnBu₃, MgBr₂, CH₂Cl₂, -40°C. (b) TBAF, THF, RT. (c) TsCl, NEt₃, DMAP, CH₂Cl₂, Δ . (d) KH, THF, RT. (e) Me(CH₂)₇MgI, CuI, THF, -30°C. (f) KH, methallyl chloride, THF, Δ . (g) 3% PhCH=RuCl₂(PCy₃)₂, CH₂Cl₂, Δ . (h) CrO₃/3,5-DMP, CH₂Cl₂, -20°C. (i) H₅IO₆, Et₂O, RT, then NaBH₄ (1.2 equiv.)/ *i*PrOH, 0°C. (j) H₂, Pd/C (Ref. 13).

A derivative of the commercially available L-erythrulose was the starting material in the synthesis of (+)-malyngolide described above. A key step was the stereoselective nucleophilic allylation of its carbonyl group under nonchelation (Felkin–Anh) control. The synthesis of the naturally occurring (–)-malyngolide therefore requires either D-erythrulose derivatives as the starting material,¹⁵ or stereoselective allylations of L-erythrulose derivatives to be performed

under chelation control.^{4,16} Both possibilities are currently being explored by our group and the results will be reported in due course.

Acknowledgements

This research has been supported by the Spanish Ministry of Education (DGICYT project PB98-1438), by BANCAIXA (project P1B99-18) and by the Conselleria de Educació de la Generalitat Valenciana (project GV-99-77-1-02). E.C. thanks the latter institution for a pre-doctoral fellowship.

References

- 1. Cardllina II, J. H.; Moore, R. E.; Arnold, E. V.; Clardy, J. J. Org. Chem. 1979, 44, 4039-4042.
- (a) Winter, E.; Hoppe, D. *Tetrahedron* 1998, 54, 10329–10338. (b) Maezaki, N.; Matsumori, Y.; Shogaki, T.; Soejima, M.; Ohishi, H.; Tanaka, T.; Iwata, C. *Tetrahedron* 1998, 54, 13087–13104. (c) For a synthesis of (+)malyngolide: Kogure, T.; Eliel, E. L. J. Org. Chem. 1984, 49, 576–579.
- 3. Carda, M.; Castillo, E.; Rodríguez, S.; Uriel, S.; Marco, J. A. Synlett 1999, 1639-1641.
- 4. Marco, J. A.; Carda, M.; González, F.; Rodríguez, S.; Castillo, E.; Murga, J. J. Org. Chem. 1998, 63, 698–707, and references therein.
- 5. Carda, M.; Rodríguez, S.; Murga, J.; Falomir, E.; Marco, J. A.; Röper, H. *Synth. Commun.* **1999**, *29*, 2601–2610. Under the reaction conditions described in this paper, erythrulose acetals are isolated with ee >96%.
- 6. Carda, M.; Castillo, E.; Rodríguez, S.; Murga, J.; Marco, J. A. Tetrahedron: Asymmetry 1998, 9, 1117-1120.
- 7. Yamamoto, Y.; Shida, N. Advances in Detailed Reaction Mechanisms 1994, 3, 1-44.
- 8. The configuration was established by an X-ray diffraction analysis of the crystalline tosylate **3**. The X-ray analysis was performed by Dr. S. Uriel. Complete data will be sent in due time to the Cambridge Crystallographic Data Centre.
- 9. Lipshutz, B. H.; Sengupta, S. Org. React. 1992, 41, 135-631.
- Grubbs, R. H.; Chang, S. *Tetrahedron* 1998, 54, 4413–4450. Attempts at preparing lactone 8 by direct ring-closing metathesis of the methacrylate of alcohol 5 were unsuccessful (see Ref. 3).
- (a) Wu, W.-L.; Wu, Y.-L. J. Org. Chem. 1993, 58, 3586–3588. (b) Xie, M.; Berges, D. A.; Robins, M. J. J. Org. Chem. 1996, 61, 5178–5179.
- 12. When the reduction of the aldehyde with NaBH₄ was conducted for 18 h at room temperature, malyngolide was formed in 15% yield, together with 60% of 9. Attempts at achieving a complete saturation of the conjugated C=C bond by increasing the reaction time and/or the amount of NaBH₄ were unsuccessful however, and led only to reduction of the lactone carbonyl group.
- 13. Hagiwara, H.; Uda, H. J. Chem. Soc., Perkin Trans. 1 1985, 1157-1159.
- 14. Optical rotations: 9, $[\alpha]_D^{22}$ +13.9 (CHCl₃, *c* 1.5); (+)-malyngolide, $[\alpha]_D^{22}$ +12.3 (CHCl₃, *c* 1), lit.^{2c} for (+)-malyngolide, $[\alpha]_D^{22}$ +12.4 (CHCl₃, *c* 2).
- 15. Marco, J. A.; Carda, M.; González, F.; Rodríguez, S.; Murga, J. Liebigs Ann. Chem. 1996, 1801-1810.
- 16. Castillo, E., Ph.D. Thesis, Univ. Jaume I, Castellón, Spain, 2000.